Explore the contents of this article with a free Wolfram System Modeler trial. Mathematical modeling is not just used for understanding and designing new
products and
drugs; modeling can also be used in health care, and in the future, your doctor might examine your
liver with a mathematical model just like the one researchers at
AstraZeneca have developed.
The liver is a vital organ, and currently there isn't really a way to compensate for loss of liver function in the long term. The liver performs a wide range of functions, including detoxification, protein synthesis, and secretion of compounds necessary for digestion, just to mention a few. In the US and Europe, up to 15 % of all acute liver failure cases are due to drug-induced liver injury, and the risk of injuring the liver is of major concern in testing new drug candidates. So in order to safely monitor the impact of a new drug candidate on the liver, researchers at the pharmaceutical company AstraZeneca have
recently published a method for evaluating liver function that combines
magnetic resonance imaging (MRI) and mathematical modeling---potentially allowing for early identification of any reduced liver function in humans.
Last year, Wolfram MathCore and AstraZeneca worked together on a project where we investigated some modifications of AstraZeneca's modeling framework. We presented the promising results at the
ISMRM-ESMRMB Joint Annual Meeting, which is the major international magnetic resonance conference. In this blog post, I'll show how the Wolfram Language was used to calculate liver function and how more complex models of liver function can be implemented in Wolfram System Modeler.